Kinetics of uranium(VI) desorption from contaminated sediments: effect of geochemical conditions and model evaluation.

نویسندگان

  • Chongxuan Liu
  • Zhenqing Shi
  • John M Zachara
چکیده

Stirred-flow cell experiments were performed to investigate the kinetics of uranyl [U(VI)] desorption from a contaminated sedimentcollected from the Hanford 300 Area at the U.S. Department of Energy Hanford Site, Washington. Three influent solutions of variable pH, Ca and carbonate concentrations that affected U(VI) aqueous and surface speciation were used under dynamic flow conditions to evaluate the effect of geochemical conditions on the rate of U(Vl) desorption. The measured rate of U(VI) desorption varied with solution chemical composition that evolved as a result of thermodynamic and kinetic interactions between the solutions and sediment The solution chemical composition that led to a larger disequilibrium between adsorbed U(VI) and equilibrium adsorption state yielded a faster desorption rate. The experimental results were used to evaluate a multirate, surface complexation model (SCM) that has been proposed to describe U(VI) desorption kinetics in the Hanford sedimentthat contained complex adsorbed U(VI) in mass transfer limited domains (Lui et al. Water Resour. Res. 2008, 44, W08413). The model was modified and supplemented by including multirate, ion exchange reactions to describe the geochemical interactions between the solutions and sediment With the same setof model parameters, the modified model reasonably well described the evolution of major ions and the rates of U(VI) desorption under variable geochemical and flow conditions, implying that the multirate SCM is an effective way to describe U(VI) desorption kinetics in subsurface sediments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Advective removal of intraparticle uranium from contaminated vadose zone sediments, Hanford, U.S.

A column study on U(VI)-contaminated vadose zone sediments from the Hanford Site, WA, was performed to investigate U(VI) release kinetics with water advection and variable geochemical conditions. The sediments were collected from an area adjacent to and below tank BX-102 that was contaminated as a result of a radioactive tank waste overfill event. The primary reservoir for U(VI) in the sediment...

متن کامل

Removal of uranium (U(VI)) ions using NiO NPs/Ag-clinoptilolite zeolite composite adsorbent from drinking water: equilibrium, kinetic and thermodynamic studies

The present research describes the performance of NiO NPs/Ag-clinoptilolite composite adsorbent for the removal of uranium (U(VI)) ions from drinking water of Dezful city-Iran. Prior to the experiment reactions, Na-clinoptilolite was chemically treated with NaCl, Silver ions (Ag+) and subsequently Nickel (NiO) NPs to prepare NiO NPs/Ag-clinoptilolite. The samples were characterized by SEM, AAS,...

متن کامل

Removal of uranium (U(VI)) ions using NiO NPs/Ag-clinoptilolite zeolite composite adsorbent from drinking water: equilibrium, kinetic and thermodynamic studies

The present research describes the performance of NiO NPs/Ag-clinoptilolite composite adsorbent for the removal of uranium (U(VI)) ions from drinking water of Dezful city-Iran. Prior to the experiment reactions, Na-clinoptilolite was chemically treated with NaCl, Silver ions (Ag+) and subsequently Nickel (NiO) NPs to prepare NiO NPs/Ag-clinoptilolite. The samples were characterized by SEM, AAS,...

متن کامل

Pilot-scale in situ bioremedation of uranium in a highly contaminated aquifer. 2. Reduction of u(VI) and geochemical control of u(VI) bioavailability.

In situ microbial reduction of soluble U(VI) to sparingly soluble U(IV) was evaluated at the site of the former S-3 Ponds in Area 3 of the U.S. Department of Energy Natural and Accelerated Bioremediation Research Field Research Center, Oak Ridge, TN. After establishing conditions favorable for bioremediation (Wu, et al. Environ. Sci. Technol. 2006, 40, 3988-3995), intermittent additions of etha...

متن کامل

Metabolically active microbial communities in uranium-contaminated subsurface sediments.

In order to develop effective bioremediation strategies for radionuclide contaminants, the composition and metabolic potential of microbial communities need to be better understood, especially in highly contaminated subsurface sediments for which little cultivation-independent information is available. In this study, we characterized metabolically active and total microbial communities associat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Environmental science & technology

دوره 43 17  شماره 

صفحات  -

تاریخ انتشار 2009